Privacy Policy

Le 25 skills più richieste per un Data Scientist (tratto da una storia vera) prt 1

Non è facile essere un wannabe Data Scientist

Essere un Data Scientist è veramente difficile, essere un Data Scientist autodidatta ancora peggio.
Il tempo non è mai abbastanza, c’è bisogno di focalizzarsi e focalizzarsi verso quello che il mercato del lavoro vuole, in questo modo ci saranno più possibilità di farcela, almeno all’inizio.
Dove focalizzarsi?
Sono sempre convinto che bisogna definire una strategia di medio termine e seguirla con pazienza, altrimenti si rischierà di essere distratti da tutte le informazioni provenienti dalla rete.
Verso Settembre 2017 fino ad oggi, molto spesso dopo aver inviato il mio CV per annunci di lavoro come Data Scientist ho segnato manualmente su Google Foglio le competenze richieste per quel ruolo
Ho superato più di 430 righe ognuna contenente una informazione.
Oggi ho deciso di analizzare questo CSV in modo da capire quali fossero le competenze più richieste come Data Scientist ed esercitarmi.
In [80]:
#importing the libraries 
import pandas as pd
import matplotlib.pyplot as plt
In [40]:
csvname= "skill.csv"
df= pd.read_csv(csvname,sep= ",", header=None, index_col=False)
print(df.head(30))
                             0    1
0                       Agile   NaN
1                           AI  NaN
2                    Algorithm  NaN
3                    Algorithm  NaN
4                   Algorithms  NaN
5                    Analytics  NaN
6                      Apache   NaN
7                      Apache   NaN
8                          API  NaN
9   Artificial neural networks  NaN
10                         AWS  NaN
11                         AWS  NaN
12                         AWS  NaN
13                         AWS  NaN
14                         AWS  NaN
15                         AWS  NaN
16                         AWS  NaN
17                         AWS  NaN
18                       Azure  NaN
19                       Azure  NaN
20                       Azure  NaN
21                       Azure  NaN
22                       Azure  NaN
23              Bayesian Model  NaN
24              Bayesian Model  NaN
25              Bayesian Model  NaN
26         Bayesian Statistics  NaN
27                          BI  NaN
28                          BI  NaN
29                         BI   NaN
30                    Big Data  NaN
31                    Big Data  NaN
32                    Big Data  NaN
33                    Big Data  NaN
34                    Big Data  NaN
35                    Big Data  NaN
36                    Big Data  NaN
37                    Big Data  NaN
38                    BIgQuery  NaN
39                    BIgQuery  NaN
In [34]:
print(df.columns)
Int64Index([0, 1], dtype='int64')
In [50]:
df.columns=['skills','vuota']
In [51]:
print(df.head())
       skills vuota
0      Agile    NaN
1          AI   NaN
2   Algorithm   NaN
3   Algorithm   NaN
4  Algorithms   NaN
In [65]:
df_skill=pd.DataFrame(df.iloc[:,0], columns=['skills'])
print(df_skill.head(5))
       skills
0      Agile
1          AI
2   Algorithm
3   Algorithm
4  Algorithms
In [71]:
print(df_skill.info())
RangeIndex: 423 entries, 0 to 422
Data columns (total 1 columns):
skills    423 non-null object
dtypes: object(1)
memory usage: 3.4+ KB
None
In [84]:
df_skill_grouped=df_skill.groupby(['skills']).size().sort_values(ascending=False)
In [85]:
print(df_skill_grouped)
skills
SQL                                        37
Python                                     36
Spark                                      16
Python                                     13
Handoop                                    12
Scala                                      10
Scikit Learn                               10
NLP                                        10
Machine Learning                           10
Statistics                                 10
AWS                                         8
Big Data                                    8
NOSQL                                       7
Kafka                                       7
TensorFlow                                  6
Tableau                                     6
Pandas                                      5
Numpy                                       5
Azure                                       5
SQL                                         5
Machine learning                            5
Financial Systems                           4
Predictive Model                            4
Neural Networks                             4
C++                                         4
Machine Learning                            4
Go                                          3
Bayesian Model                              3
MapReduce                                   3
Clustering                                  3
                                           ..
Sentiment Analysis                          1
NLP                                         1
Scraping                                    1
NOSQL                                       1
Naive Bayes classifier                      1
Natural language processing                 1
Numpy                                       1
Linear Model                                1
Latent semantic indexing                    1
Pig                                         1
Hashmaps                                    1
Flask                                       1
Flink                                       1
Gis                                         1
GitHub                                      1
Testing Software                            1
Google 360                                  1
Gradient Boosted Machine                    1
TF-IDF                                      1
Plotly                                      1
T-SQL                                       1
Html                                        1
Information Extraction                      1
Instantaneously trained neural networks     1
JQuery                                      1
JSON                                        1
Java                                        1
JavaScript                                  1
Jira                                        1
AI                                          1
Length: 150, dtype: int64
In [90]:
df_skill_grouped.head(25).plot.bar()
 25 skills
Queste analisi devono evidentemente essere migliorate:

 

1) Implementare delle Regex, in questo modo potrò correggere velocemente gli errori di battitura ed essere più preciso (ad esempio nel grafico si vede che “Python” e “Python ” (con spazio finale) sono stati trattati come elementi differenti

 

2) Web Scraping degli annunci di lavoro ai quali ho risposto per estrarre automaticamente le competenze richieste ed aggiornare automaticamente il foglio Google

 

3) Migliorare il codice del Pomodoro Workout Analyzer così da essere più consapevole dicome sto gestendo le ore di esercizio con Python.

 

Un abbraccio e grazie per aver letto il mio articolo.

 

Andrea

 

ps se noti qualche errore scrivimi pure

 

Un commento su “Le 25 skills più richieste per un Data Scientist (tratto da una storia vera) prt 1”

Lascia un commento